UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS BLUMENAU

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA TÊXTIL

PLANO DE ENSINO

Identificação da disciplina

Código	Nome	Créditos	Carga horária	Trimestre
TEX410004	Fenômenos de Transporte aplicados para Processos Têxteis	3	45 h	2023.1

Drofossor(ss):	Andrea Cristiane Krause Bierhalz	
Professor(es):	José Alexandre Borges Valle	
E-mail:	andrea.krause@ufsc.br; alexandre.valle@ufsc.br	
Horário/Local	5.8:00-4/A307.2	

Ementa

Equações de conservação da massa, quantidade de movimento, energia e espécie química. Propriedades de transporte. Camada limite. Escoamento laminar e turbulento. Solução de problemas relacionados aos processos têxteis envolvendo transferência de calor, massa e quantidade de movimento.

Objetivo

Habilitar o aluno a descrever os fenômenos físicos e os modelos matemáticos responsáveis pela transferência de quantidade de movimento, calor e massa. Habilitar o aluno a solucionar problemas relacionados aos processos têxteis envolvendo os fenômenos de transferência.

Conteúdo Programático

- 1. Equações básicas do transporte molecular unidimensional
- 2. Fenômenos de Transferência de Quantidade de Movimento
- 2.1 Viscosidade, Lei de Newton da viscosidade, classificação dos escoamentos
- 2.2 Obtenção e aplicação da equação da conservação da massa
- 2.3 Obtenção e aplicação da equação da quantidade de movimento
- 2.4 Obtenção e aplicação da equação da energia mecânica: escoamento viscoso interno, perda de carga, escoamento com bombas.
- 2.5 Camada limite hidrodinâmica
- 3. Fenômenos de Transferência de calor
- 3.1 Obtenção da equação de conservação de energia
- 3.2 Aplicação da equação de conservação de energia. Perfis de temperatura. Condições de contorno. Condução
- 3.3 Convecção térmica natural e forçada
- 3.4 Radiação
- 4. Fenômenos de Transferência de Massa
- 4.1 Difusividade, concentrações, velocidades e fluxos mássicos e molares
- 4.2 Obtenção da equação de conservação da espécie química
- 4.3 Aplicação da equação de conservação da espécie química. Perfis de concentração. Condições de contorno.
- 4.4 Convecção mássica
- 4.5 Transferência simultânea de calor e massa

Cronograma

Cronogra				
Aula	Data	Assunto		
1	02/03	Introdução aos Fenômenos de Transporte, aplicações têxteis, Lei de Newton da viscosidade		
2	09/03	Obtenção e aplicação da equação da conservação da massa		
3	16/03	Obtenção e aplicação da equação da quantidade de movimento		
4	23/03	Obtenção e aplicação da equação da energia - bombas, perda de carga		
5	30/03	Entregar 1ª lista - Obtenção da equação de conservação de energia Aplicação da equação de conservação de energia. Perfis de temperatura. Condições de contorno. Condução.		
6	06/04	Aplicação da equação de conservação de energia. Perfis de temperatura. Condições de contorno. Condução.		
7	13/04	Convecção natural e forçada. Radiação.		
8	20/04	Convecção natural e forçada. Radiação.		
9	27/04	Entregar 2ª lista Difusividade, concentrações, velocidades e fluxos mássicos e molares.		
10	04/05	Obtenção da equação de conservação da espécie química. Aplicação da equação de conservação da espécie química. Perfis de concentração. Condições de contorno.		
11	11/05	Convecção mássica. Transferência simultânea de calor e massa.		
	15/05	Só entregar a 3ª lista		
12	18/05	Avaliação		

Avaliação (Instrumentos e critérios)	
Prova (70%)	
1ª lista (10%)	
2ª lista (10%)	
3ª lista (10%)	

Referências

- 1. BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Fenômenos de transporte. 2a ed. Rio de Janeiro: LTC, c2004.
- 2. CREMASCO, M. A. Fundamentos de Transferência de Massa. São Paulo, Editora da UNICAMP, 1998.
- 3. CUSSLER, E. L. Diffusion: mass transfer in fluid systems. 3th ed. Cambridge, MA: Cambrigde University, c2009.
- 4. HAGHI, A. K. Heat & Mass Transfer in Textiles. Canada, World Scientific and Engineering Academy and Society, 2a ed., 2011.
- 5. WELTY, J. R; WICKS, C. E; WILSON, R. E.; RORRER, G. L. Fundamentals of momentum, heat and mass transfer. 5th ed. New York: John Wiley, 2008.
- 6. WHITAKER, S. Introduction to Fluid Mechanics. USA, Krieger Publishing Company, 1992.

Observações:

- a) Atestado médico não abona falta.
- b) Discentes com nota final menor que 7,0 (sete vírgula zero) ou com frequência inferior a 75%, serão reprovados na disciplina.
- c) Plágio. Plagiar é a apresentar ideias, expressões ou trabalhos de outros como se fossem os seus, de forma intencional ou não. Serão caracterizadas como plágio a compra ou apresentação de trabalhos elaborados por terceiros e a reprodução ou paráfrase de material,

publicado ou não, de outras pessoas, como se fosse de sua própria autoria, e sem a devida citação da fonte original. Os casos relacionados à compra, reprodução, citação, apresentação etc., de trabalhos, ideias ou expressões serão encaminhados pelo professor da disciplina ao Colegiado do Curso e rigorosamente examinados.